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ABSTRACT

Model Qutput Statistics (MOS) is an objective weather forecasting technique which consists of deter-
mining a statistical relationship between a predictand and varjables forecast by a numerical model at some
projection time(s). It is, in effect, the determination of the “weather related” statistics of a numerical
model. This technique, together with screening regression, has been applied to the prediction of surface
wind, probability of precipitation, maximum temperature, cloud amount, and conditional probability of
frozen precipitation. Predictors used include surface observations at initial time and predictions from the
Subsynoptic Advection Model (SAM) and the Primitive Equation model used operationally by the National
Weather Service. Verification scores have been computed, and, where possible, compared to scores for fore-
casts from other objective techniques and for the official forecasts. MOS forecasts of surface wind, proba-
bility of precipitation, and conditional probability of frozen precipitation are being disseminated by the
National Weather Service over teletype and facsimile. It is concluded that MOS is a useful technique in

objective weather forecasting.

1. Introduction

Until rather recently, objective forecasting methods!
have been considered as falling into one of two cate-
gories—dynamical and statistical. Now, the relatively
new field of stochastic-dynamic prediction is being ex-
plored and is beginning to show promise for operational
use sometime in the future (Epstein, 1969; Fleming,
1971). However, until stochastic-dynamic prediction is
developed much further and more powerful computers
are available, we must use some combination of dynami-
cal and statistical methods for practical forecasting.

There has been little success in the prediction of such
variables as surface wind, probability and form of pre-
cipitation, maximum and minimum temperature, cloud-
iness, ceiling, and visibility with dynamic models, and
indeed, most models do not even forecast these vari-
ables directly. There are two general ways in which sta-
tistics can be used and the results applied to predictions
from numerical models to yield estimates of those ele-
ments not successfully forecast directly by the numeri-
cal models.

The first, used initially by Klein et al. (1959), is
usually called the perfect prog method. A concurrent
statistical relationship is developed between the variable
to be estimated and selected variables which can be
forecast by a dynamic model. Both predictand and pre-

! An objective forecasting system has been defined by Allen and
Vernon (1951) as “strictly speaking . . . one which can produce
one and only one forecast from a specific set of data”. It ““ . . .
does not depend for its accuracy upon the forecasting experience
or the subjective judgment of the meteorologist using it.”” Sub-
jective judgment is, of course, used in the development of the sys-
tem.

dictors are observed quantities in the developmental
sample. In application, this relationship is applied to
numerical model output at, say, a projection of 36 hr
to get an estimate of the predictand 36 hr after the data
input time for the numerical model.

The other method, which we call Model Output Sta-
tistics (MOS), consists of determining a statistical rela-
tionship between the predictand and variables from the
numerical model at some projection time(s). Application
is made in exactly the same way as with the perfect
prog method.

The MOS technique is, in effect, the determination of
the “weather-related” statistics of a numerical model.
For instance, we may want to know what percent of
the time rain occurs when the model predicts 809, rela-
tive humidity, or, what the best estimate is of the sur-
face wind at an airport when a model predicts a par-
ticular 1000-mb geostrophic wind at that point in time
and space.

The development and operational use of a Subsynop-
tic Advection Model (SAM) has been reported by
Glahn and Lowry (1972). As an integral part of this
same project, the output of SAM and the Primitive
Equation (PE) model used by the National Weather
Service (Shuman and Hovermale, 1968) has been used
to derive regression equations for objectively forecast-
ing surface wind, probability of precipitation (PoP),
maximum temperature, cloud amount, and conditional
probability of frozen precipitation. Forecasts of several
of these weather variables are made operationally twice
a day by the National Weather Service (NWS) and
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transmitted over facsimile and teletype for use at field
stations.

Input to SAM are the hourly observations made at
0700 and 1900 (all times GMT). These data, as well as
the SAM and PE model outputs, have been saved for

statistical analysis since April 1967. SAM produces fore-.

casts for the period 0700 to 2400 (and the corresponding
period 12 hr later); therefore, the forecasts cover the
“first” forecast period, “today” in the case of the 0700
run and ‘“‘tonight” for the 1900 run. The area for which
SAM produces forecasts is generally the United States
east of the Mississippi River.

In this paper, the applications of MOS and screening
regression to forecasting the surface weather variables
named above are presented. Verification scores on inde-
pendent data are given and, where possible, compared to
scores for forecasts from other objective techniques and
for the official forecasts.

2. The screening regression procedure

Multiple linear regression relates one variable ¥,
called the dependent variable or predictand, to % other
variables X, called the independent variables or pre-
dictors. The result is an equation which can be used for
estimating the predictand as a linear combination of
the predictors:

V=aota:X1+asXo+- - +arXs.

The carat indicates an estimate, and the a;’s are the
regression constant and coefficients. The a,’s are deter-
mined such that the sum of the squares of the estimation
errors is a minimum on the developmental (or depen-
dent) sample of size #», i.e.,

n
> (v;—¢;)*=minimum.
=1

A measure of the goodness of the equation for esti-
mating ¥ is the reduction of variance RV, where

1 n 1 n
-2 (=)= 2 (0i—9)*
7 =1 n j=1

RV = .
-2 (vi—5)*

7 =1
This is the fractional part of the variation of ¥ about
its mean ¥, measured by the variance

1 =

of=—2 (3=9)*
7 =1

that is “explained” by the regression equation. RV is
the square of the multiple correlation coefficient, i.e.,

It is clear from the above equations that decreasing
the sum of squares of the estimation errors is tanta-
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mount to increasing the reduction of variance RV and
to decreasing the root mean square error (or standard
error of estimate), where

1 = 3
RMSE{— 5 <y,~—z7,->2] .

n J=1

Many times it is not known which or how many pre-
dictors to include in a regression equation. Even though
the predictand may be correlated with hundreds of
variables, a regression equation containing only a few
of them usually explains nearly as much of the variance
as an equation containing many. This is due to the high
intercorrelations among the variables. Also, if many
predictors are included, the predictand may be esti-
mated extremely well in the dependent data sample,
but the equation may be showing not only the real
physical relationships but also the chance relationships
in the dependent data that will not be present in other
samples. Therefore, the equation with many terms may
perform more poorly on independent data than the one
with fewer terms.

A technique for selecting predictors to include in an
equation, called screening (or stepwise) regression, was
used in meteorology as early as 1944 by Bryan. Since
being popularized by Miller (1958), it has had many
applications in meteorology. [For instance, see Klein
et al. (1959) and Pore (1964) ; other applications are dis-
cussed by Glahn (1965)7]. Actually, several variations
of this general technique have been used. The one ex-
plained below, sometimes called the forward stepwise
method, is perhaps the simplest.

The first step in the procedure is to select the variable
which correlates most highly (in either a positive or
negative sense) with the predictand. This is the variable
which explains a greater fraction of the predictand
variance than any other of those available. Then, the
next variable selected is the one that together with the
first increases the reduction of variance the most.
Selection can continue in this way until some specified
cutoff criterion is met. Usually the cutoff criterion is
some function of the additional reduction of variance
afforded by the next best predictor. A discussion of the
screening technique and the necessary matrix operations
is given by Efroymson (1960).

Screening regression, as a mathematical technique,
can be used no matter what the joint distribution of
the predictand and predictors. (However, this distribu-
tion is important in the application of significance tests
and the interpretation of results.) In fact, any or all of
the variables involved can be binary (i.e., take on only
one of two possible values, 0 and 1).

If a predictand can assume only one of two states, it
can still be estimated by giving it the value of zero for
the first state and one for the second state. The estimate
provided by the regression equation can then be con-
sidered as the probability of the second state for the par-
ticular combination of predictor values on which the
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estimate was calculated. [See Mook (1948) and Lund
(1955) for early uses of this particular procedure. ]

If a predictand can assume only one of several, say g,
states, it can be transformed into ¢ binary predictands
and each treated as discussed above. Miller (1964) used
this technique for ¢>2 when all predictors were binary
and called it Regression Estimation of Event Proba-
bilities (REEP). Even though the individual estimates
are not bounded by zero and one, their sum over, all ¢
states is always unity, provided exactly the same pre-
dictors are included in each of the ¢ regression equa-
tions. Screening algorithms can also be specified for this
application of regression.

The equations for estimating probabilities can in-
clude continuous as well as binary variables. However,
except in special circumstances, the probability esti-
mates may not be as well behaved as when all predictors
are binary. It is also worthy of note that minimizing the
RMSE is the same as minimizing the P-Score defined
by Brier (1950) and generally used today in PoP
verification.

Tt is usually better to develop an objective procedure
for each station separately. However, when the data
sample is small, it may be necessary to group several
stations together to get a stable system. This is par-
ticularly true when the predictand is binary and es-
pecially when the climatological probability of the event
is far from 0.5. An example of this “generalized opera-
tor”” approach is contained in Russo et al. (1966).

3. Probability of precipitation (PoP)

Perhaps the first major use of MOS was in the estima-
tion of probability of precipitation. For this binary
predictand, all stations (about 100) for which data were
available were grouped together in the generalized
operator concept. Seasonal equations were developed
and updated with more data twice a year (summer:

TaBLE 1. Regression equation for forecasting 12-hr PoP (1200
2400) used during the winter of 1968-69. S, is 3-hr saturation defi-
cit (m), SLP sea level pressure (mb), PE precipitation amount
(inches), and relative humidity is in percent. If the variable is <
the indicated value, the contribution to PoP is the amount indi-
cated; otherwise the contribution by that variable is zero. All
times GMT.

Contribu- Cumulative
tion to PoP reduction
Predictor (percent) of variance
1. Constant 42.67

2. SAM Su <0 at 1800 10.73 0.3606
3. PE 12-hr precipitation 0.05 at 2400 — 7.68 0.4334
4. SAM Su <75 at 2100 10.19 0.4529
5. SAM Si  —5 at 1500 12,68 0.4669
6. PE mean relative humidity 70 at 1800 — 6.33 0.4761
7. PE 12-hr precipitation .20 at 2400 —12.97 0.4817
8. SAM SLP 1015 at 1800 6.44 0.4863
9. SAM Si 45 at 1500 8.63 0.4889
10. PE mean relative humidity <90 at 2400 — 7.36 0.4912
11, SAM Sz < —15 at 1500 8.62 0.4925
12, PE 13-br precipitation =0 at 2400 — 6.42 0.4937

(Probability range is 29, to 1009%,)

HARRY R. GLAHN AND DALE A.

LOWRY 1205

5
W}
8 toor—
& r (149)
2 BCJ {159) « o(6)
g |
g L */i58)
o) o (260)
W 60— 133n
&
w - /lags)
5 40—
lﬂ . 611)
@ 11123
Q

20—
4
;E,, )
S W2y ) 1 |

20 40 60 80 100

FORECAST PROBABILITY IN PERCENT

Fi1c. 1. Reliability of PoP forecasts for the period 1 July 1970
through 31 October 1971. The number of cases represented by
each dot is shown in parentheses. The line represents perfect
reliability.

April-September; winter: October-March). Predictors
were all binary and were derived from PE relative
humidity in the layer from the surface to approximately
400 mb, SAM saturation deficit [see Glahn and Lowry
(1972) for a definition of saturation deficit], PE pre-
cipitation amount, and SAM sea level pressure. Pre-
cipitation was defined as the event when observed pre-
cipitation was 2 0.01 inch.

Separate equations were developed for the two 6-hr
periods 1200-1800 and 1800-2400 and for the 12-hr
period 1200-2400 from the 0700 run. Equations for
corresponding times were developed from the 1900 run.
Since forecasts from the latter equations have not been
verified on independent data, and for brevity, only the
0700 run equations will be discussed.

The equation for forecasting 12-hr PoP is given in
Table 1. Tt is typical of all PoP equations. Since each
predictor is either zero or one, each corresponding co-
efficient will contribute zero or its full value. Also, the
theoretical minimum and maximum forecasts possible
from this equation can be computed and are found to be
2% and 1009, respectively. Generally, the lower limit
of all the PoP equations developed was near zero; the
upper limit for the 12-hr equations was near 1009, and
for the 6-hr equations was near 909%,.

It is possible that the theoretical limiting values
would never occur. That is, the particular combinations
of predictors that would give the limiting values do not
occur. It is our experience, however, that the full range
of theoretically possible PoP values are actually forecast.

One desirable characteristic of probability forecasts is
reliability ; for all of the forecasts of 209, say, the rela-
tive frequency of the event should be as close to 209}, as
possible. Fig. 1 shows that the PoP forecasts were
slightly low during the July 1970-October 1971 period.
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F1c. 2. The Brier score for the objective and local forecasts over a 3-year period.
The yearly scores are also shown for the NMC guidance forecasts.

Since SAM remained virtually unchanged during its
period of operation, the bias is probably due to changes
made in the moisture portion of the PE model. A similar
graph covering the period July 1968-June 1969 showed
very little bias (see Glahn and Lowry, 1969).

We have compared the MOS forecasts with those
made at local stations since July 1968 and with those
made subjectively at NMC since July 1969; Fig. 2 gives
the monthly and yearly Brier scores? This figure
indicates:

2 The Brier Score is defined by the National Weather Service to
be one-half the P-Score formulated by Brier (1950).

1) The MOS forecasts were better than the locals for
the first 15 months of comparison. The reverse is
true for the last 21 months,

2) The MOS forecasts have been better, on the aver-
age, than the NMC guidance for the 24-month
period of comparison.

The sudden drop in skill of the MOS forecasts relative
to the locals in the fall of 1969 was due in part to a
change made in the moisture portion of the PE model
in late October. Because of this change, PE predictors
were not used from December 1969-August 1970. Since
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that time, PE predictors have been included, following
another PE model change in September 1970.

The fact that the forecasts made locally are now
better than the MOS forecasts is really not surprising.
In addition to having 1 or 2 hr later data available, most
forecasters also have these MOS forecasts available for
guidance. Quite likely, the accuracy of the MOS fore-
casts has decreased slightly due to PE model changes.
It is also likely the locals have improved slightly, al-
though the record we have is not sufficient to establish
absolute (rather than relative) skill.

Additional details, too lengthy to be included here,
are contained in Glahn and Lowry (1969).

4. Surface wind

Specifying a two-dimensional wind vector presents
some interesting problems; these problems and possible
solutions are discussed in some detail by Court (1958),
Lenhard et al. (1963), Lewis (1968), and Glahn (1970a).

One prediction model consists of a separate regression
equation for each of the two wind components. Since
the mean square error of each component is minimized
by the regressions, the mean square vector error is also
minimized (Glahn, 1970a). However, the speed of the
wind is, in the mean, underforecast by this model
(Glahn, 1970a; Barrientos, 1970). If minimum RMS
of speed is desired, a separate equation can be derived
for speed itsclf. Then the component estimates can be
used for direction and the speed cquation for speed.

Minimizing the mean square crror of the individual
component estimates does not minimize the mean
square error of the direction computed from those esti-
mates. Regression estimation of wind direction directly
poses a special problem because of the circular nature
of the variable. If the predictors include a vector that
is rather well related to the predictand, the direction
difference between that vector and the predictand can
be used to define a new predictand with a scale of —180
to +180. The same basic problem exists with this new
predictand as with the original with a scale of 0 to 360.
However, the new predictand may usually lie in the
range —90 to 490 and if so, perhaps omitting the few
truant cases would produce a good result.

As part of the SAM project, separate regression equa-
tions were developed for estimating the U and V wind
components and the wind speed valid at 1200 and 1800
for each of 10 stations in the eastern United States.
Data were used for the period April-September, 1967
and 1968. The stations were Albany, Atlanta, Baltimore,
Cleveland, Cincinnati, Washington, New York, New
Orleans, Chicago, and St. Louis. Each sample was of
approximately 200 cases in size. The equations for the
U and V components were developed by forcing the
computer program to select as the first two predictors
the 1000-mb geostrophic wind components forecast by
SAM valid at the same time as the predictand and then
screening several other variables.

HARRY R. GLAHN AND DALE A. LOWRY
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The equations for U and V valid at 1200 selected for
testing usually, but not always, contained one or both
of the observed 0700 wind components in addition to
the 1000-mb winds valid at 1200; those used for testing
valid at 1800 contained a selection of 1000-mb winds at
1200, 500-mb winds at 1200 and 1800, and 1000-mb
temperatures at 1200 and 1800, in addition to the
1000-mb winds valid at 1800. The 1200 equations con-
tained from two to four predictors; the 1800 equations
contained from two to five predictors. The decision of
which equation to test (how many predictors to include)
was made subjectively.

The equations for estimating speed directly were
derived by forcing the 1000-mb geostrophic wind speed
forecast by SAM valid at the same time as the pre-
dictand and then screening several other variables. The
equations used for testing contained from four to six
predictors similar to those in the U and V equations,
the only significant difference being that wind speeds
were used as predictors, whereas in the U and V equa-
tions only wind components were used as predictors.

Sample equations for St. Louis are shown below :

U12=0.4824-0.185U/2—0.333V (2 +0.276 V"
712=0.194+0.164U4'2+0.175V 12— 0.005U*"4-0.170V""
St2=1.576+40.239502+0.1755 —0.040V ¢184-0.027 U 4"

where U, V and S are the U- and V-wind components,
and the wind speed, respectively (knots); the subscript
0 indicates 1000-mb geostrophic values predicted by
SAM; and the superscript indicates the valid time in
GMT. .

Thus, the estimate of wind speed at 1200 (S¥) at St.
Louis depends on the 1200 GMT 1000-mb geostrophic
wind speed forecast by SAM (S,%), the observed 0700
surface wind speed at St. Louis (S%), the 1800 GMT
1000-mb V-wind component forecast by SAM (V,'%),
and the 1200 GMT 1000-mb U-wind component fore-
cast by SAM (U2).

The equations for the 10 stations were evaluated for
each day in April and May 1969 for which SAM data
were available. The wind forecasts in the aviation bulle-
tins (FT’s) made at NWS offices were used for compari-
son. Since the FT’s do not mention wind if the speed is
expected to be less than 10 kt, the comparison was made
in two ways.

For all those cases where the FT’s included wind, and
objective forecasts were available, the RMSE of direc-
tion (computed from the U and V equations) and speed
(direct from the speed equation) and the bias (mean
forecast minus mean observed) of speed (both direct
from the speed equation and calculated from the U and
V equations) were computed. Also, for all cases when
the FT’s and objective forecasts were available, con-
tingency tables for speed were prepared by considering
the FT forecast of wind to be under 10 kt when wind
was not mentioned. From these contingency tables,
which had categories <10, 10-12, 13-17, 18-22 and
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Fic. 3. Comparison of official FT and objective wind forecasts
for 10 stations in the eastern United States for April and May
1969. The number of cases used in calculating each statistic varies
from 166 to 545.

> 22 kt, skill scores and percent correct were computed.
These scores are shown in Fig. 3.

Fig. 3 indicates that the directions from the objective
forecasts were as good as those from the FT’s and that
the speeds from the objective were better than those
from the FT’s. The projections of the objective fore-
casts (S and 11 hr) refer to the latest data used (0700).
Actually, the forecasts could be available to the field
forecasters before 0900. The F'T’s were prepared with
0900 and perhaps 1000 data, if available; transmission
time for the forecasts is 1045, The bias in the speed com-
puted from the U and V equations is noticeable.

Although the verification on independent data is not
prodigious, it is sufficient to demonstrate the usefulness
of this technigue. Good results have also been obtained
by Barrientos (1970). Alternative models for wind pre-
diction are given by Glahn (1970a).

5. Maximum temperature

MOS max temperature equations have been derived
for each of 16 stations every six months beginning April
1969 for the forthcoming summer or winter season.
Each new set of summer (winter) equations was de-
veloped on a dependent data sample which included the
available data from all the previous summers (winters)
combined.

The predictand was the daily (midnight to midnight)
observed max temperature. The predictors included
forecasts from the SAM and PE model valid between
1200 and 2400 and initial 0700 observations. The pre-
dictand lead time was such that a forecast of max tem-
perature for ‘“today” could be made at about 0900
(0400 EST).

Initial data included dew point, weather, cloud
amount, temperature, and surface wind components.
Variables from the PE model included the following at
6-hr intervals: column mean relative humidity, 1000-mb
temperature, precipitation amount, and 500-mb height.
Forecast variables from SAM were the 3-hr saturation
deficit, sea level pressure, and 1000-mb geostrophic wind
components.

The variables selected most often by the screening
are, in order: PE 1000-mb temperature, initial surface
temperature, initial cloud amount, PE 500-mb height,
and SAM saturation deficit. Since the equation for each

JOURNAL OF APPLIED METEOROLOGY

VoLuME 11

station is unique, the order of these predictors and their
respective contributions to the total reduction of vari-
ance differs for each station. A typical equation is
shown in Table 2.

When equations developed on a seasonal basis are
applied to independent data, there should be little over-
all bias in the forecasts. However, there may be a
monthly bias even in the dependent data. The bias com-
puted for each month during the winter season of
1970-71 revealed that there was indeed a monthly bias;
as indicated in Fig. 4, the forecasts were slightly too low
at the beginning (October) and end (March) of the
period and too high during the intervening months. In
an attempt to correct this periodic bias, the sine and co-
sine of the day of the year were included as possible
predictors.

Each of the 16 single station equatiens which were
rederived contained the cosine of the day of the year
and 4 equations also contained the sine. Verification on
winter 1970-71 data showed that the periodic bias was
indeed reduced but not eliminated; also, the mean ab-
solute error (M AE) was reduced by 0.29F (79,).

By verifying forecasts based on equations with 2, 4,
6, 8 and 10 predictors, for each of two seasons, it was
determined that 10-predictor equations were better than
those with a lesser number of predictors. This may be a
little surprising since 85 predictors were screened and
the sample size was only about 500. For the summer of
1971, the MAE from the 10-predictor equation was
0.04F (19) less than the MAE from the 8-predictor
equation.

The perfect prog technique has been used with much
success by Klein and Lewis (1970) for maximum tem-
perature prediction, and the NWS distributes forecasts
made by this method for guidance at local offices. Fore-
casts from the MOS system, Klein-Lewis system, and

TaBLE 2. Equation for estimating maximum temperature (°F) at
Washington, D. C., in winter.

Cumu-

lative

reduc-

tion of
Coeffi- vari-
Predictor cient  ance

Constant 21.62

1000-mb temperature (°C) at 1200 0.310 0.742
Mean relative humidity (%) at 1200 ~0.032 0.796
Observed surface temperature (°F) at 0700 0.570 0.829
Observed cloud cover at 0700* —1.093 0.855
1000-mb U-wind component (kt) at 1200 0.084¢ 0.865
Saturation deficit {m) at 1500 0.014 0.873
1000-mb temperature (°C) at 1800 0.488 0.876
1000-mb V-wind component (kt) at 2400 —0.044 0.880
Observed weather at 0700** 2.776  0.883
Precip amt <0.10 inch at 2400 (binary) 1.999 0.885

* Observed total cloud cover in coded form: O=none or partial
obscuration, 1=scattered, 2=broken, 3=overcast, 4=obscured.

** Observed weather at 0700 in coded form: O=none of the fol-
lowing, 1=frozen precipitation, 2=drizzle or freezing drizzle,
3=rain or freezing rain.
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1969 1970 1971
APR_MAY JUNE JULY AUG_SEPT OCT NOV_DEC | JAN FEB MAR _APR MAY JUNE JULY AUG SEPT OCT NOV _ DEC| JAN FEB MAR APR MAY JUNE JULY AUG SEPT
MEAN ABSOLUTE ERROR (°F)
MOS 3.9 3.2 3.63.2 2.8 2,9 3.8 3.9 4,949 4.5 4,1 3.93.9 3.7 4.0 3.5 3.4 3.2 3.6 3.9|4.6 4.5 4.0 4.4 3.5 2.6 2.5 2.7 3.1
K-L 4.4 3.7 3.82.7 3.3 3.3 4.1 3.7 5.4(51 51 5.3 4.23.7 2.8 2.9 2.2 2.8 3.9 3.6 4.2|4.7 4.5 4.2 4.5 3.7 2.6 2.4 2.4 3.0
LocaL 3,5 2,8 2,824 21 2.4 3.5 3.3 3.5013.5 3.0 3.7 3.82.9 2.6 2.5 2.0 2.3 3.5 3.0 3.2|3.3 3.2z 3.3 3.8 3.2 2,3 2.3 2.3 2.6
BIAS (°F)
MOS -4 -4 <1414 -1.3 ,2-1,6 1,1 3,5 2.9 1.2 -8 -.6-1.9 -2.6 -3.2 -2,8 -2.2 -.6 3 1.0[2,0 1.6 .9 ,0 -1.0-1.2 -.8 -1.4 -.6
K-L 8 -1 .0 .2 -1 L5 L7 -8 3,712.6 1O 1.6 =710 .4 4 3 .2 24 .5 11,8127 .8 1,3 -0 .6 .8 .5 .6 b
LOCAL z .3 .3 .86 .5 .6 .3 -2 .2/ .6 -7 -4 .1 8 .3 .2 .3 .3319 .8 10/ .9 & .3 -5 .3 .8 .8 .8 .3
ABSOLUTE ERROR > 10 °F (NO.)
MOS NA  NA NA NA NA NA NA NA NA| NA 33 35 18 16 10 18 8 5 3 19 20f{ 40 39 32 30 18 2 6 71 8
K-L NA NA NA NA NA NA NA NA NA| NA 48 74 30 30 10 12 3 2 8 1 27| 50 32 30 32 18 9 9 7 12
LCAL |xa A NA NA NA NA NA NA NA] WA 9 28 26 13 10 7 4 2 8 9 83 17 16 11 19 W 3 11 7 6
HOS EQUATIONS WITH 6 PREDICTORS 1OS EQUATIONS WITH 10 PREDICTORS ] MOS EQUATIONS WITH 10 PREDICTORS (SINE & COSINE)
17 STATIONS 16 STATIONS
KLEIN-LEWIS (BAROTROPIC) KLEIN-LEWIS (PE)

F16. 4. Monthly verification scores for forecasts of today’s maximum temperature at 16 eastern United States stations. The number of
large errors was not computed prior to February 1970. K-L means the Klein-Lewis operational perfect prog system.

local offices have been compared over the 30-month
period April 1969-September 1971. Verification statis-
tics are shown in Fig. 4.

From April-September 1969 only 6-predictor MOS
equations were used. During this period, the MOS fore-
casts had about 0.5F less MAE than the Klein-Lewis
forecasts, and the local forecasts were about 0.5F better
than the MOS forecasts. For the following six-month
period (October 1969-March 1970) the MAE of the
MOS forecasts continued to be less than the M A E of the
Klein-Lewis forecasts and about 1.0F greater than the
locals.

In April 1970, the Klein-Lewis system, which had
been based on a barotropic numerical model, was re-
placed by a system based on the PE model (see Klein
et al., 1971). Fig. 4 indicates that the M A E of the Klein-
Lewis system was less than the M A E for MOS for the
period April-September 1970. During the winter of
1970-71 MOS, with the sine and cosine terms, was
better than Klein-Lewis; during the summer of 1971
they had about equal M4 E. The locals continued to be
about 0.5F better in the summer and 1.0F better in
the winter than the two objective systems.

Fig. 4 also shows that for the period February-
September 1971 the number of local forecasts with
errors > 10F was only 609, that of the MOS system.
The number of Klein-Lewis large errors was 259, greater
than for MOS. Additional details are given by Annett
et al. (1972).

6. Cloud amount

Regression equations have been developed for esti-
mating cloud amount at each of four stations for
the times 1200, 1500, 2100 and 2400. The predictand is
a coded variable such that O=clear, 1=partial ob-
scuration, 2=thin scattered, 3=scattered, 4=thin
broken, 5=broken, 6=thin overcast, 7=overcast, and
8=obscured. The possible predictors included observed
weather and cloud amount at 0700, PE layer relative

humidity and precipitation amount, and SAM 1000-mb
wind components and saturation deficit. A sample pre-
diction equation is shown in Table 3; it was developed
on a sample of 298 cases from the winters of 1967-68
and 1968-69.

It is somewhat surprising that the relative humidity
and saturation deficit predictors chosen by screening
were valid at 2400 rather than 1200 and 1500, since the
predictand was observed at 1200. This time shift, which
was also noted for the other three stations St. Louis,
Mo., New York, N. Y., and Atlanta, Ga., suggests a
tendency on the part of each numerical model to be slow
in the movement of its moisture variable.

The cloud forecasts have not been verified formally on
independent data. However, forecasts have been com-
puted daily for about two years and appear to be very
good.

7. Conditional probability of frozen precipitation
[PoFP(P)]

The predictand in this case is the probability of frozen
precipitation given that precipitation occurs. To esti-
mate this, we used a subsample of our total data con-

TasLE 3. Equation for estimating cloud amount at
Washington, D. C., in winter.

Cumu-
lative
reduc-

Coeffi-  tion of

Predictor cient  variance

Constant 3.115
Observed cloud cover at 0700* 0.775  0.403
Mean relative humidity (%) at 2400 0.013  0.503
Saturation deficit (m) at 2400 —0.006 0.525
1000-mb U-wind component (kt) at 2100 —0.022 0.543
1000-mb V-wind component (kt) at 1200 0.040 0.556
1000-mb U-wind component (kt) at 1800  —0.029  0.571

* Observed total cloud cover in coded form: 0=none or partial
obscuration, 1==Scattered, 2="broken, 3=overcast, 4=obscured.
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FORECAST PROBABILITY IN PERCENT

Fi1G. 5. The reliability of the PoFP(P) forecasts for the period
1 October 1969 through 15 May 1970. The number of cases rep-
resented by each dot is shown in parentheses. The line repre-
sents perfect reliability.

sisting of only those cases when precipitation did occur
at the predictand valid time. The main predictor was
the “Wagner index” which was computed according to
the work of Wagner (1957). This predictor is itself a
conditional probability of frozen precipitation deter-
mined from the 1000-500 mb thickness. The other pos-
sible predictors screened were binary and were derived
from the PE 1000-mb temperature (Z'). The generalized
operator concept was used; data from nearly 100 sta-
tions were combined to derive the regression equations.
However, the Wagner index carries with it pertinent
climatological information. The equation derived on
two winter seasons of data which produces forecasts
valid at the end of the “today” period (2400) is shown
in Table 4. This equation will produce values in the
range —4 to 104 inclusive.

The reliability of PoFP(P) forecasts for the 1969-70
winter is given in Fig. 5. This figure shows a slight bias
toward high forecast probabilities. The bias is probably
due to changes that have been made in the initialization
of the PE model affecting the 1000-mb temperature. A
similar graph prepared before the changes were made
did not show this bias. The fact that changes in the

Tasre 4. Equation for estimating conditional probability of
frozen precipitation (percent) at 2400 in the eastern United
States. PE T indicates 1000-mb temperature forecast by primi-
tive equation model.

Cumula-
tive re-
duction of
Predictor Coefficient  variance
Constant —3.91
Wagner index at 0000 73.04 0.664
PE T4 at 0000 £ 3C (binary) 9.63 0.690
PE Ty at 1200 < 1C (binary) 10.78 0.699
PE 7Ty at 0000 £ 8C (binary) 7.27 0.700
PE T'¢ at 0000 < —2C (binary) 6.85 0.701
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122 15Z [1:4 212 eoL POP [2 6 6§ POFP B E
CAR 2488 176 2118 -12 2112 -32 2812 -42 865 @33 06 33 190 108
BIV 1819 -2] 1813 ~09 1513 -16 2011 [24 20812 @68 48 34 198 892
PWM 2003 138 2109 @95 2812 -06 2118 -07 2108 @25 @7 25 @9 083
BOS 2513 159 2114 191 2516 250 2316 245 2215 0285 22 08 993 P63
PVD 2347 179 2211 2408 2313 282 2314 279 2210 082 A1 2@ 95 M7
WL 20805 170 2289 258 2412 278 2413 257 2212 A10 B4 69 B9] B9
LGA 2512 2M 24(4 309 2515 326 2415 387 2415 @02 61 @2 988 437
ALB 1687 166 1912 236 2115 217 2214 201 2111 @19 10 11 ©98 867
BGM 2011 255 2116 250 221% 233 2117 214 2216 €23 1§ 85 057 B2

I'16. 6. A portion of a typical SAM teletype bulletin transmitted
17 January 1971, For each station, the regression estimation of
surface wind (4 digits) valid at 12Z (1200 GMT) is given. Then,
for each of four valid times, the saturation deficit (three digits)
and regression estimation of surface wind (four digits) is given.
Next, the 12-hr PoP (three digits) and two 6-hr PoP’s (two digits
each) are given which cover the 1200-0000 period. At the far right
are the conditional probabilities of frozen precipitation valid at
1200 (beginning of period) and 0000 (end of period).

numerical model can cause problems in the objective
interpretation of the model forecasts is, of course, one
of the major problems with the MOS approach. How-
ever, the same problem, perhaps to a lesser degree, also
exists with the subjective interpretation of numerical
model forecasts.

8. Operational transmissions

SAM forecasts and some of the derived products dis-
cussed above are transmitted twice daily over teletype
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1. 7. A portion of a typical SAM facsimile chart. It shows the
6-hr probability of precipitation (solid lines) for the period 1200
to 1800 and the conditional probability of frozen precipitation
(dashed lines) valid at 1200 GMT 29 January 1970.
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and facsimile by the NWS. Samples of these transmis-
sions are shown in Figs. 6 and 7. These figures indicate
that the probability forecasts can vary rapidly in space
and time, yet give consistent patterns. For instance,
the probability of precipitation changes from 759 to
59, aver a distance of about 150 mi.

9. Summary and conclusions

Our work with the MOS technique has shown it to
be very useful in forecasting surface weather variables.
This is especially true when probabilities are being fore-
cast, since the errors of the numerical models are con-
sidered in determining the forecast equations.

MOS has been used successfully for probability of
precipitation, surface wind, conditional probability of
frozen precipitation, maximum temperature, and cloud
amount. Forecasts for the first three of these from the
MOS system are being transmitted twice daily by the
NWS over teletype and facsimile. They are all being
used daily in experimental, computer-produced worded
forecasts (Glahn, 1970b).

Progress in objective weather forecasting within the
next few years will come through the combining of
numerical and statistical models. Due to the develop-
ment of new, and the modification of old, numerical
models, data samples containing numerical model out-
put are a perishable commodity. Therefore, considerable
prior planning and organization will be necessary in the
operational implementation of MOS products. This is
one of the main concerns of the Techniques Develop-
ment Laboratory.
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